If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2+m-1=0
a = 3; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·3·(-1)
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{13}}{2*3}=\frac{-1-\sqrt{13}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{13}}{2*3}=\frac{-1+\sqrt{13}}{6} $
| 3/5y+10=4 | | 8x-16=-8 | | 3(a-6)=-5a-(7-3a) | | 15x+(3x-4)=180 | | x(6x-1)=25 | | 2x+11+5x-12=180 | | 2.1x-10.5=31.5-6.7x | | 2+2/3=2/5x+2 | | 398.40=47(x+2.45) | | 2.1x-10.5=31.5-6.7 | | -2x/9+3/5=7/4 | | P=-0.01x2+14x+1,200 | | 2(x/2)=52 | | 3(y-7)(y+1)=0 | | 2/3(4x+3)=3x | | 6(y-3)-4=-6(-3y+1)-6y | | r-624/8=26 | | (3x-5)^2+1=10 | | 4-(x-3)=5(x+11) | | 2(y+4)-6=-16 | | -6=x/9-5 | | 24(s+26)=792 | | (x=51) | | (y-7)(y+1)=0 | | -625/2a=40 | | 14/n=8/3 | | 14w=207.2 | | -7x9=6 | | (2x+4)+(x+10)=180 | | 9x-3+6x+1=5x+2+10x-4 | | 27(w-955)=756 | | 13d=12 |